Recent implementations, applications, and extensions of the Locally Optimal Block Preconditioned Conjugate Gradient method (LOBPCG)

نویسنده

  • Andrew Knyazev
چکیده

Since introduction [A. Knyazev, Toward the optimal preconditioned eigensolver: Locally optimal block preconditioned conjugate gradient method, SISC (2001) doi:10.1137/S1064827500366124] and efficient parallel implementation [A. Knyazev et al., Block locally optimal preconditioned eigenvalue xolvers (BLOPEX) in HYPRE and PETSc, SISC (2007) doi:10.1137/060661624], LOBPCG has been used is a wide range of applications in mechanics, material sciences, and data sciences. We review its recent implementations and applications, as well as extensions of the local optimality idea beyond standard eigenvalue problems. Householder Symposium on Numerical Linear Algebra This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in whole or in part without payment of fee is granted for nonprofit educational and research purposes provided that all such whole or partial copies include the following: a notice that such copying is by permission of Mitsubishi Electric Research Laboratories, Inc.; an acknowledgment of the authors and individual contributions to the work; and all applicable portions of the copyright notice. Copying, reproduction, or republishing for any other purpose shall require a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All rights reserved. Copyright c © Mitsubishi Electric Research Laboratories, Inc., 2017 201 Broadway, Cambridge, Massachusetts 02139 Recent implementations, applications, and extensions of the Locally Optimal Block Preconditioned Conjugate Gradient method (LOBPCG) Andrew Knyazev (Mitsubishi Electric Research Laboratories)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

University of Colorado at Denver and Health Sciences Center Preconditioned Eigensolver LOBPCG in hypre and PETSc

We present preliminary results of an ongoing project to develop codes of the Locally Optimal Block Preconditioned Conjugate Gradient (LOBPCG) method for symmetric eigenvalue problems for hypre and PETSc software packages. hypre and PETSc provide high quality domain decomposition and multigrid preconditioning for parallel computers. Our LOBPCG implementation for hypre is publicly available in hy...

متن کامل

Nonsymmetric Preconditioning for Conjugate Gradient and Steepest Descent Methods1

We numerically analyze the possibility of turning off postsmoothing (relaxation) in geometric multigrid when used as a preconditioner in conjugate gradient linear and eigenvalue solvers for the 3D Laplacian. The geometric Semicoarsening Multigrid (SMG) method is provided by the hypre parallel software package. We solve linear systems using two variants (standard and flexible) of the preconditio...

متن کامل

Nonsymmetric multigrid preconditioning for conjugate gradient methods

We numerically analyze the possibility of turning off post-smoothing (relaxation) in geometric multigrid used as a preconditioner in conjugate gradient linear and eigenvalue solvers for the 3D Laplacian. The geometric Semicoarsening Multigrid (SMG) method is provided by the hypre parallel software package. We solve linear systems using two variants (standard and flexible) of the preconditioned ...

متن کامل

Block Locally Optimal Preconditioned Eigenvalue Xolvers (BLOPEX) in hypre and PETSc

We describe our software package Block Locally Optimal Preconditioned Eigenvalue Xolvers (BLOPEX) publicly released recently. BLOPEX is available as a stand-alone serial library, as an external package to PETSc (“Portable, Extensible Toolkit for Scientific Computation”, a general purpose suite of tools for the scalable solution of partial differential equations and related problems developed by...

متن کامل

Multilevel preconditioners for solving eigenvalue problems occuring in the design of resonant cavities

We investigate eigensolvers for computing a few of the smallest eigenvalues of a generalized eigenvalue problem resulting from the finite element discretization of the time independent Maxwell equation. Various multilevel preconditioners are employed to improve the convergence and memory consumption of the JacobiDavidson algorithm and of the locally optimal block preconditioned conjugate gradie...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1708.08354  شماره 

صفحات  -

تاریخ انتشار 2017